BSN - MCV 4U - Specialist High Skills Major

Contextualized Learning Activity

Business and Economics Applications of Differentiation for Calculus Students

The study of Calculus involves investigating the rates of change of functions. The instantaneous rate of change of a function in graphical form is the slope of a line or tangent drawn at a particular point. Calculating the derivative of the equation of a function is the process known as differentiation.

The focus of this activity is to build on a foundation of the understanding of determining first and second differences of functions and applying these skills to economics and business concepts.
http://t0.gstatic.com/images?q=tbn:ANd9GcRSGuC708xCMC_elJi72zijFbmQY5IfIPvF4tPnbPIOnAkCECABA

In class, you have already been introduced to the topic of differentiation. At this point, you should understand the definition of a derivative.

- The derivative of $f(x)$ at a point x is given by the equation $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- The derivative of a function at a point (a, $f(a))$ can be interpreted as:
o The slope of a tangent line to the function at this point
o The instantaneous rate of change of the function at this point

Tangent Line at $\mathrm{x}=1$
$m_{\text {tan }}=y^{\prime}$
$m_{\text {tan }}=($ approx $) 1.25$

The following is a summary of the Rules for Differentiation:

Constant Rule: Given , then

Power Rule: Given , then

Constant Multiplier Rule: Given , then

Sum or Difference Rule: Given , then

Product Rule: Given , then

Quotient Rule: Given - then

Chain Rule:
Given
, then

Provide complete solutions to Lesson 1 questions: (complete solutions found in Appendix A) (answer key found in Appendix B)

1. Differentiate the following polynomials equations (do not simplify):
a)
b)
c)
d)
e) -
f)
g) -
h) -
i)
$=$
j)
2. Evaluate the derivative of the function at the point where $x=4$. Explain what this means.
3. Determine the equation of the tangent to the curve of at the point (2, 25).
