The study of **Calculus** involves investigating the rates of change of functions. The instantaneous rate of change of a function in graphical form is the **slope of a line or tangent** drawn at a particular point. Calculating the derivative of the equation of a function is the process known as **differentiation**.

The focus of this activity is to build on a foundation of the understanding of determining first and second differences of functions and applying these skills to economics and business concepts.

Lesson 1: Determining Rate of Change

In class, you have already been introduced to the topic of differentiation. At this point, you should understand the **definition of a derivative**.

- The derivative of \(f(x) \) at a point \(x \) is given by the equation \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \)

- The derivative of a function at a point \((a, f(a)) \) can be interpreted as:
 - The slope of a tangent line to the function at this point
 - The instantaneous rate of change of the function at this point

![Graph of \(y = 2^x \)](http://t0.gstatic.com/images?q=tbn:ANd9GcR5SuC708xCMC_elJi72zijFbmqQv5IfifPvF4tPnbPIOnAkCECABA)
The following is a summary of the Rules for Differentiation:

Constant Rule: Given , then .

Power Rule: Given , then .

Constant Multiplier Rule: Given , then .

Sum or Difference Rule: Given , then .

Product Rule: Given , then .

Quotient Rule: Given , then .

Chain Rule: Given , then .

Provide complete solutions to Lesson 1 questions: (complete solutions found in Appendix A) (answer key found in Appendix B)

1. Differentiate the following polynomials equations (do not simplify):

 a)

 b)

 c)

 d)

 e)

 f)

 g)

 h)

 i)

 j)

2. Evaluate the derivative of the function at the point where \(x = 4 \).
 Explain what this means.

3. Determine the **equation of the tangent** to the curve of at the point \((2, 25)\).