Many real world situations involve triangles that do not contain right triangles.
Since the primary trig ratios (SOH CAH TOA) only apply to right triangles, we must look at a different relationship between the sides and angles of a non-right triangle.

The Sine Law relates sides and angles in a triangle in the following way:

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
\boldsymbol{O R} \\
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{gathered}
$$

The length of any side, divided by the sine of the opposite angle, is the same for all 3 pairs of sides and angles!

NOTE: You only need to have a minimum of 2 ratios to solve for a missing side and/or angle.

Using the Sine Law to Find a Side

Example: Given $\triangle D E F$, find e.

$$
\begin{aligned}
& \frac{e}{\sin E}=\frac{f}{\sin F} \\
& \frac{e}{\sin 50}=\frac{54}{\sin 34} \\
& e \sin 34=54 \sin 50 \\
& e=\frac{54 \sin 50}{\sin 34} \\
& e \cong 74 m
\end{aligned}
$$

Using the Sine Law to Find an Angle

Example: Given $\triangle A B C$, find $<B$.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \frac{78}{\sin 47}=\frac{106}{\sin B} \\
& 78 \sin B=106 \sin 47 \\
& \sin B=\frac{106 \sin 47}{78} \\
& <B=\sin ^{-1}\left(\frac{106 \sin 47}{78}\right) \\
& <B \cong 84^{\circ}
\end{aligned}
$$

Using the Sine Law to Solve a Triangle

Example: Given $\triangle R S T$, with $r=338 m,<T=43^{\circ}$ and $<S=78^{\circ}$, find the measures of t, s and $<R$.

Find $<R$.
$<R+43^{\circ}+78^{\circ}=180^{\circ}$
$<R=180^{\circ}-43^{\circ}-78^{\circ}$
$<R=59^{\circ}$

Find t.

$$
\begin{aligned}
& \frac{338}{\sin 59}=\frac{t}{\sin 43} \\
& t \sin 59=338 \sin 43 \\
& t=\frac{338 \sin 43}{\sin 59} \\
& t \cong 268.9 \mathrm{~m}
\end{aligned}
$$

Find s.

$$
\begin{aligned}
& \frac{338}{\sin 59}=\frac{s}{\sin 78} \\
& s=\frac{338 \sin 78}{\sin 59} \\
& s \cong 385.7 \mathrm{~m}
\end{aligned}
$$

